MIS Checklist

Spencer Smith
December 30, 2025

If a team adopts a documentation approach that does not use an MIS,
then some of the items in this checklist will not apply.

e Follows writing checklist (full checklist provided in a separate docu-
ment)

0J
0J
0J
OJ
O
O

O

ETEX points

Structure

Spelling, grammar, attention to detail
Avoid low information content phrases
Writing style

Hyperlinks should be done properly (\ref)

Every module’s specification starts on a new page

e MIS Module Classifications

O

Types that only hold data (records) are modelled as exported

types. For instance, the StdntAllocTypes module in A2: https://
gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob /master/Assignments/
A2/A2.pdf

Types that have data (state) and behaviour are modelled as ADTs.
The MIS should use the keyword Template. An example is the
BoardT ADT given at https://gitlab.cas.mcmaster.ca/smiths/se2aad
cs2me3 /blob/master /Assignments/A3/A3Soln/A3P1_Spec.pdf

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A2/A2.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A2/A2.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A2/A2.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A3/A3Soln/A3P1_Spec.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A3/A3Soln/A3P1_Spec.pdf

[0 Abstract objects are used when there is only one instance. There
is state and behaviour. This most often comes up for “global”
reader and writer modules. For instance, a module that does
logging. Abstract objects do NOT use the word Template in
the main header. An example is given in the SALst module of
A2: https://gitlab.cas.mcmaster.ca/smiths/se2aad_cs2me3/blob/
master/Assignments/A2/A2.pdf

[0 Library modules are used when there is only behaviour, no state.
They are defined as Modules, but State Variables and Environ-
ment Variable fields say “None.”

[If the module’s MIS can be parameterized by type, then the key-
word Generic is used. Generic modules are usually also Tem-
plate modules, but not necessarily. An example is given in the
Generic Stack Module (Stack(T)) given in A3: https://gitlab.cas.
mcmaster.ca/smiths/se2aad_cs2me3/blob/master/Assignments/A3/
A3Soln/A3P1 _Spec.pdf

Abstract objects will have some kind of initialization method

O

[J Abstract objects will have an assumptions that programmers will
initialize first, or a state variable that is set from False to True
when the Abstract object is initialized - this state variable then
needs to be checked for each access program call

e MIS and Mathematical syntax

[Exported constants are “hard-coded” literal values, not variables.
Constants are values that are known at specification (and therefore
compile) time. Explicit constant values are provided in the MIS,
not left to be filled in later. (They can be changed later, but
specific values should be given.)

[0 Operations do not mix incorrect types. For instance, a character is
not added to an integer, an integer is not “anded” with a Boolean,
etc.

[0 Our modified Hoffmann and Strooper notation is used, or any new
notation is clearly defined.

[Notation is consistent throughout the document.

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A2/A2.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A2/A2.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A3/A3Soln/A3P1_Spec.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A3/A3Soln/A3P1_Spec.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A3/A3Soln/A3P1_Spec.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/MISFormat/MISFormat.pdf

All arguments to a method are used in the specification of the
method in the semantics section

All local functions are used somewhere in the modules’s specifica-
tion.

The uses relation is for the modules that need to be referenced
to completely define the specification. If parts of the exported
interface from those modules are not needed, then the modules
aren’t listed under Uses.

Syntax for the modules is as specific as it needs to be to implement
the requirements. It can be tempting to gloss over details. The
details of implementation can be glossed over, but the interface
has to be unambiguously defined.

e MIS Semantics for each module

O

0

O d o0

Each access program does something — either an output, or a state
transition

Access programs either change the state of something, or have an
output. Only rarely should an access program do both (as it does
for the constructor in an ADT.)

If there is an entry in the state transition, then the state of some-
thing changes. The state change might be the local state variables,
the state variables for another module, or an environment variable.

The type is given for all state and environment variables
Outputs use out := ...
Exceptions use exc := ...

If the state invariant is satisfied before an access program call, it
will remain satisfied after the call

[J State invariant is initially satisfied

O

Local functions make the specification easier to read (there is no
requirement that the local functions will actually be implemented
in code)

Modules that deal with files, the keyboard, or the screen, have
environment variables to represent these respective entities

O

Symbols are from SRS - not yet translated to code names (that is
use 0, not theta)

e MIS Quality inspection for each module

O

O 4doogoao.

Consistent

Essential

General

Implementation independent
Minimal

High cohesion

Opaque (information hiding)

Correct level of abstraction (mentioning JSON or using Python’s
init syntax is too low-level)

e MIS Completeness

0
0
0J

All types introduced in the spec are defined somewhere
All modules in MG are in the MIS

All required sections of the template are present for all modules

