Module Guide for ProgName

Team #, Team Name
Student 1 name
Student 2 name
Student 3 name
Student 4 name

January 6, 2026

1 Revision History

Date Version Notes

Date 1 1.0 Notes
Date 2 1.1 Notes

2 Reference Material

This section records information for easy reference.

2.1 Abbreviations and Acronyms

symbol description

AC Anticipated Change

DAG Directed Acyclic Graph

M Module

MG Module Guide

OS Operating System

R Requirement

SC Scientific Computing

SRS Software Requirements Specification

ProgName Explanation of program name
ucC Unlikely Change
letc. —SS] [... —SS]

i

Contents

1

2

8

9

Revision History

Reference Material
2.1 Abbreviations and Acronyms

Introduction

Anticipated and Unlikely Changes
4.1 Anticipated Changes
4.2 Unlikely Changes

Module Hierarchy
Connection Between Requirements and Design

Module Decomposition

7.1 Hardware Hiding Modules (M1)

7.2 Behaviour-Hiding Module 0oL
7.2.1 Input Format Module (M??)

722 Bte. . .o
7.3 Software Decision Module
T.3. 1 Ete. . . .

Traceability Matrix

Use Hierarchy Between Modules

10 User Interfaces

11 Design of Communication Protocols

12 Database Design

13 Timeline

List of Tables

1 Module Hierarchy
2 Trace Between Requirements and Modules
3 Trace Between Anticipated Changes and Modules

1l

ii
i

w

CU ks = o o =W

(S8

List of Figures

1 Use hierarchy among modules

v

3 Introduction

Decomposing a system into modules is a commonly accepted approach to developing soft-

ware. A module is a work assignment for a programmer or programming team (Parnas et al.,

1984). We advocate a decomposition based on the principle of information hiding (Parnas,

1972). This principle supports design for change, because the “secrets” that each module

hides represent likely future changes. Design for change is valuable in SC, where modifica-

tions are frequent, especially during initial development as the solution space is explored.
Our design follows the rules layed out by Parnas et al. (1984), as follows:

e System details that are likely to change independently should be the secrets of separate
modules.

e Fach data structure is implemented in only one module.

e Any other program that requires information stored in a module’s data structures must
obtain it by calling access programs belonging to that module.

After completing the first stage of the design, the Software Requirements Specification
(SRS), the Module Guide (MG) is developed (Parnas et al., 1984). The MG specifies the
modular structure of the system and is intended to allow both designers and maintainers
to easily identify the parts of the software. The potential readers of this document are as
follows:

e New project members: This document can be a guide for a new project member to
easily understand the overall structure and quickly find the relevant modules they are
searching for.

e Maintainers: The hierarchical structure of the module guide improves the maintainers’
understanding when they need to make changes to the system. It is important for a
maintainer to update the relevant sections of the document after changes have been
made.

e Designers: Once the module guide has been written, it can be used to check for consis-
tency, feasibility, and flexibility. Designers can verify the system in various ways, such
as consistency among modules, feasibility of the decomposition, and flexibility of the
design.

The rest of the document is organized as follows. Section 4 lists the anticipated and
unlikely changes of the software requirements. Section 5 summarizes the module decomposi-
tion that was constructed according to the likely changes. Section 6 specifies the connections
between the software requirements and the modules. Section 7 gives a detailed description
of the modules. Section 8 includes two traceability matrices. One checks the completeness
of the design against the requirements provided in the SRS. The other shows the relation
between anticipated changes and the modules. Section 9 describes the use relation between
modules.

4 Anticipated and Unlikely Changes

This section lists possible changes to the system. According to the likeliness of the change,
the possible changes are classified into two categories. Anticipated changes are listed in
Section 4.1, and unlikely changes are listed in Section 4.2.

4.1 Anticipated Changes

Anticipated changes are the source of the information that is to be hidden inside the modules.
Ideally, changing one of the anticipated changes will only require changing the one module
that hides the associated decision. The approach adapted here is called design for change.

AC1: The specific hardware on which the software is running.

AC2: The format of the initial input data.

[Anticipated changes relate to changes that would be made in requirements, design or
implementation choices. They are not related to changes that are made at run-time, like the
values of parameters. —SS]

4.2 Unlikely Changes

The module design should be as general as possible. However, a general system is more
complex. Sometimes this complexity is not necessary. Fixing some design decisions at the
system architecture stage can simplify the software design. If these decision should later
need to be changed, then many parts of the design will potentially need to be modified.
Hence, it is not intended that these decisions will be changed.

UC1: Input/Output devices (Input: File and/or Keyboard, Output: File, Memory, and/or
Screen).

5 Module Hierarchy

This section provides an overview of the module design. Modules are summarized in a
hierarchy decomposed by secrets in Table 1. The modules listed below, which are leaves in
the hierarchy tree, are the modules that will actually be implemented.

M1: Hardware-Hiding Module

Level 1 Level 2

Hardware-Hiding Module

?
?
?
Behaviour-Hiding Module — ?
?
?
?
?
?
Software Decision Module 7
o

Table 1: Module Hierarchy

6 Connection Between Requirements and Design

The design of the system is intended to satisfy the requirements developed in the SRS. In
this stage, the system is decomposed into modules. The connection between requirements
and modules is listed in Table 2.

[The intention of this section is to document decisions that are made “between” the
requirements and the design. To satisfy some requirements, design decisions need to be
made. Rather than make these decisions implicit, they are explicitly recorded here. For
instance, if a program has security requirements, a specific design decision may be made to
satisfy those requirements with a password. —SS]

7 Module Decomposition

Modules are decomposed according to the principle of “information hiding” proposed by
Parnas et al. (1984). The Secrets field in a module decomposition is a brief statement of
the design decision hidden by the module. The Services field specifies what the module will
do without documenting how to do it. For each module, a suggestion for the implementing
software is given under the Implemented By title. If the entry is OS, this means that the
module is provided by the operating system or by standard programming language libraries.
ProgName means the module will be implemented by the ProgName software.

Only the leaf modules in the hierarchy have to be implemented. If a dash (-) is shown,
this means that the module is not a leaf and will not have to be implemented.

7.1 Hardware Hiding Modules (M1)

Secrets: The data structure and algorithm used to implement the virtual hardware.

Services: Serves as a virtual hardware used by the rest of the system. This module provides
the interface between the hardware and the software. So, the system can use it to
display outputs or to accept inputs.

Implemented By: OS

7.2 Behaviour-Hiding Module

Secrets: The contents of the required behaviours.

Services: Includes programs that provide externally visible behaviour of the system as
specified in the software requirements specification (SRS) documents. This module
serves as a communication layer between the hardware-hiding module and the software

decision module. The programs in this module will need to change if there are changes
in the SRS.

Implemented By: —

7.2.1 Input Format Module (M?7?)

Secrets: The format and structure of the input data.

Services: Converts the input data into the data structure used by the input parameters
module.

Implemented By: [Your Program Name Here]

Type of Module: [Record, Library, Abstract Object, or Abstract Data Type] [Information
to include for leaf modules in the decomposition by secrets tree.]

7.2.2 Etc.

7.3 Software Decision Module

Secrets: The design decision based on mathematical theorems, physical facts, or program-
ming considerations. The secrets of this module are not described in the SRS.

Services: Includes data structure and algorithms used in the system that do not provide
direct interaction with the user.

Implemented By: —

7.3.1 Etc.

8 Traceability Matrix

This section shows two traceability matrices: between the modules and the requirements
and between the modules and the anticipated changes.

Req. Modules

R1 M1, M??, M?7, M??

R2 M?? M??

R3 M??

R4 M??, M??

R5 M??7, M??7, M??7, M??, M??, M??
R6 M?7?, M?? M??7, M??7, M??, M??
R7 M??, M??, M??7, M??7, M??

RS M?7?, M??, M??7, M??, M??

R9 M?7?

R10 M??, M?? M??

R11 M??, M?? M??, M??

Table 2: Trace Between Requirements and Modules

AC Modules

AC1 M1

AC2 M?7?
AC?? M??
AC?? M??
AC?? M??
AC?? M??
AC?? M??
AC?? M??
AC?? M?7?
AC?? M??
AC?? M??
AC?? M??

Table 3: Trace Between Anticipated Changes and Modules

9 Use Hierarchy Between Modules

In this section, the uses hierarchy between modules is provided. Parnas (1978) said of two
programs A and B that A uses B if correct execution of B may be necessary for A to complete
the task described in its specification. That is, A uses B if there exist situations in which
the correct functioning of A depends upon the availability of a correct implementation of
B. Figure 1 illustrates the use relation between the modules. It can be seen that the graph
is a directed acyclic graph (DAG). Each level of the hierarchy offers a testable and usable
subset of the system, and modules in the higher level of the hierarchy are essentially simpler
because they use modules from the lower levels.

[The uses relation is not a data flow diagram. In the code there will often be an import
statement in module A when it directly uses module B. Module B provides the services
that module A needs. The code for module A needs to be able to see these services (hence
the import statement). Since the uses relation is transitive, there is a use relation without
an import, but the arrows in the diagram typically correspond to the presence of import
statement. —SS]

[If module A uses module B, the arrow is directed from A to B. —SS]

Figure 1: Use hierarchy among modules

10 User Interfaces

[Design of user interface for software and hardware. Attach an appendix if needed. Drawings,
Sketches, Figma —SS]

11 Design of Communication Protocols

[If there is communication between hardware and software, it may be necessary to explain
the design of the communication protocol. This section should be filled in with NA if it is
not appropriate for a given project. —SS|

12 Database Design

[If a database is a significant component of the project, the database design should be
summarized here. This section should be filled in with NA if it is not appropriate for a given
project. —SS]

13 Timeline

[Schedule of tasks and who is responsible —SS]
[You can point to GitHub if this information is included there —SS]

References

David L. Parnas. On the criteria to be used in decomposing systems into modules. Comm.
ACM, 15(2):1053-1058, December 1972.

David L. Parnas. Designing software for ease of extension and contraction. In ICSE '78:
Proceedings of the 3rd international conference on Software engineering, pages 264-277,
Piscataway, NJ, USA, 1978. IEEE Press. ISBN none.

D.L. Parnas, P.C. Clement, and D. M. Weiss. The modular structure of complex systems.
In International Conference on Software Engineering, pages 408-419, 1984.

	Revision History
	Reference Material
	Abbreviations and Acronyms

	Introduction
	Anticipated and Unlikely Changes
	Anticipated Changes
	Unlikely Changes

	Module Hierarchy
	Connection Between Requirements and Design
	Module Decomposition
	Hardware Hiding Modules (M1)
	Behaviour-Hiding Module
	Input Format Module (M??)
	Etc.

	Software Decision Module
	Etc.

	Traceability Matrix
	Use Hierarchy Between Modules
	User Interfaces
	Design of Communication Protocols
	Database Design
	Timeline

