Module Interface Specification for ProgName

Team #, Team Name
Student 1 name
Student 2 name
Student 3 name
Student 4 name

January 6, 2026

1 Revision History

Date Version Notes

Date 1 1.0 Notes
Date 2 1.1 Notes

2 Symbols, Abbreviations and Acronyms

See SRS Documentation at [give url —SS]
[Also add any additional symbols, abbreviations or acronyms —SS|

i

Contents

1

Revision History

Symbols, Abbreviations and Acronyms
Introduction

Notation

Module Decomposition

MIS of [Module Name —SS]

6.1 Module.

6.2 Uses e

6.3 Syntax
6.3.1 Exported Constants Lo
6.3.2 Exported Access Programs oL

6.4 Semantics
6.4.1 State Variables
6.4.2 Environment Variables
6.4.3 Assumptions.
6.4.4 Access Routine Semantics
6.4.5 Local Functions

Appendix

1l

ii

W W W W WwwWwwwwww =

=

3 Introduction

The following document details the Module Interface Specifications for [Fill in your project
name and description —SS]

Complementary documents include the System Requirement Specifications and Module
Guide. The full documentation and implementation can be found at [provide the url for
your repo —S§]

4 Notation

[You should describe your notation. You can use what is below as a starting point. —SS]
The structure of the MIS for modules comes from Hoffman and Strooper (1995), with
the addition that template modules have been adapted from Ghezzi et al. (2003). The
mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance,
the symbol := is used for a multiple assignment statement and conditional rules follow the
form (c; = ri|ca = ra...|cn =).
The following table summarizes the primitive data types used by ProgName.

Data Type Notation Description

character char a single symbol or digit

integer 7 a number without a fractional component
in (-00, 00)

natural number N a number without a fractional component
in [1, 00)

real R any number in (-00, 00)

The specification of ProgName uses some derived data types: sequences, strings, and tu-
ples. Sequences are lists filled with elements of the same data type. Strings are sequences
of characters. Tuples contain a list of values, potentially of different types. In addition,
ProgName uses functions, which are defined by the data types of their inputs and outputs.
Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

...

Level 1 Level 2

Hardware-Hiding

Input Parameters

Output Format

Output Verification
Behaviour-Hiding Temperature ODEs

Energy Equations

Control Module

Specification Parameters Module

Sequence Data Structure
Software Decision ODE Solver
Plotting

Table 1: Module Hierarchy

6 MIS of [Module Name —SS]

[Use labels for cross-referencing —SS]
[You can reference SRS labels, such as R??. —SS]
[It is also possible to use KTEXfor hypperlinks to external documents. —SS]

6.1 Module
[Short name for the module —SS]

6.2 Uses

6.3 Syntax
6.3.1 Exported Constants

6.3.2 Exported Access Programs

Name In Out Exceptions
laccessProg - - -

—s9

6.4 Semantics
6.4.1 State Variables

[Not all modules will have state variables. State variables give the module a memory. —SS]

6.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module
has external interaction with the environment, such as for a device driver, screen interface,

keyboard, file, etc. —SS]

6.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for
practical purposes assumptions are sometimes appropriate. —SS]

6.4.4 Access Routine Semantics
laccessProg —SS]():
e transition: [if appropriate —SS|

e output: [if appropriate —SS]

e exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state
transition. In this case a state transition can only occur if the module is changing the state
of another module. —S§]

[Modules rarely have both a transition and an output. In most cases you will have one
or the other. —SS]

6.4.5 Local Functions

[As appropriate —SS] [These functions are for the purpose of specification. They are not nec-
essarily something that is going to be implemented explicitly. Even if they are implemented,
they are not exported; they only have local scope. —SS]

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Main-
tenance: A Practical Approach. International Thomson Computer Press, New York, NY,
USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.

http:// citeseer.ist.psu.edu/428727.html

7 Appendix

[Extra information if required —SS]

Appendix — Reflection

[Not required for CAS 741 projects —SS]

The information in this section will be used to evaluate the team members on the graduate
attribute of Problem Analysis and Design.

The purpose of reflection questions is to give you a chance to assess your own learning
and that of your group as a whole, and to find ways to improve in the future. Reflection
is an important part of the learning process. Reflection is also an essential component of a
successful software development process.

Reflections are most interesting and useful when they’re honest, even if the stories they
tell are imperfect. You will be marked based on your depth of thought and analysis, and not
based on the content of the reflections themselves. Thus, for full marks we encourage you
to answer openly and honestly and to avoid simply writing “what you think the evaluator
wants to hear.”

Please answer the following questions. Some questions can be answered on the team
level, but where appropriate, each team member should write their own response:

1. What went well while writing this deliverable?

2. What pain points did you experience during this deliverable, and how did you resolve
them?

3. Which of your design decisions stemmed from speaking to your client(s) or a proxy
(e.g. your peers, stakeholders, potential users)? For those that were not, why, and
where did they come from?

4. While creating the design doc, what parts of your other documents (e.g. requirements,
hazard analysis, etc), it any, needed to be changed, and why?

5. What are the limitations of your solution? Put another way, given unlimited resources,
what could you do to make the project better? (LO_ProbSolutions)

6. Give a brief overview of other design solutions you considered. What are the benefits
and tradeoffs of those other designs compared with the chosen design? From all the
potential options, why did you select the documented design? (LO_Explores)

7. (After you have implemented another team’s module, which means this isn’t filled in
until after the original deadline). What did you learn by implementing another team’s
module? Were all the details you needed in the documentation, or did you need to
make assumptions, or ask the other team questions? If your team also had another
team implement one of your modules, what was this experience like? Are there things
in your documentation you could have changed to make the process go more smoothly
for when an “outsider” completes some of the implementation?

	Revision History
	Symbols, Abbreviations and Acronyms
	Introduction
	Notation
	Module Decomposition
	MIS of [Module Name —SS]
	Module
	Uses
	Syntax
	Exported Constants
	Exported Access Programs

	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	Appendix

