SRS Frequently Asked Questions

Spencer Smith
December 30, 2025

A list of Frequently Asked Questions are given below. The answer to the
question is shown below the question, in italic font.

1. If we are solving an “intermediate problem,” should we state the out-
put(s) of that step or we should only talk about the raw inputs of the
software and ultimate outputs?”

Without any other qualifying information, I would say that the interme-
diate steps are not relevant in the SRS. The SRS should be abstract. It
should say what we want, not how to calculate it. However, the world
of requirements specification doesn’t always lend itself to an absolute
answer. :-) There are definitely cases where the best course of action is
to describe how to get from a to ¢ by first passing through b. The cases
where specifying the intermediate steps makes sense are as follows:

(a) If the intermediate steps have value on their own, then they should
be included as a goal. For instance, in the Solar Water Heating
System example the energy in the water and the PCM depends on
the temperatures. If the ultimate goal was to know the energies, it
still would make sense to output the temperatures, since they have
value on their own.

(b) If the intermediate steps make the specification clearer, or easier
to understand, they should be included. Although a specification
should say what is desired, there are cases where the appropriate
way to specify “what” is to say “how.” This is called an opera-
tional specification. An operational specification gives the steps for
the intended behaviour. All other things being equal, our prefer-
ence is still a descriptive specification. A descriptive specification



says what is required in terms of the desired properties, without
reference to how it will be done. As an example, a descriptive
specification for finding the minimum of a list would describe what
1s meant by minimum. A descriptive specification would say that
the output is the element of the list that is equal to or less than all
other elements. The corresponding operational specification would
give the algorithm for finding the minimum. The topic of oper-
ational versus descriptive specification is covered further in these
slides (starting around slide 22). One of the points on operational
specifications that sometimes confuses students is that the opera-
tional specification is phrased in terms of “how,” but the intention
1s still to say “what.” That is, the implementation is not required
to use the steps given for how, as long as the results match the
what. In the above example, the operational specification for the
manimum of a list gives an algorithm, but the implementation is
free to use any algorithm, as long as the output returned matches
the output that would be returned by following the operational spec-
ification.

In the SRS intermediate calculations can come through supporting the-
oretical models, general definitions, instance models and/or data defi-
nitions. The short answer to the original question is that sometimes
it makes sense to include an intermediate problem in the specification,
and sometimes it doesn’t. A generalization isn’t really possible. The
answer depends on the specific problem at hand.

. If your work depends on other applications or libraries, how does this
show up in the SRS?

The first thought may be that you should assume that the libraries are
available; that is, that you should capture this information through as-
sumptions. I can see why assuming that a library exists might be called
an assumption, but this isn’t the best location for this information. As-
sumptions are used to refine the scope; they take a very general problem
and turn it into something that we have a hope of solving. For instance,
assuming that a function is differentiable is needed for many theoretical
proofs. This assumptions is saying that the software wont work for all
functions; the class of functions that will work has been restricted. As-
sumptions refine “what” you are solving; they don’t refine “how” you


https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Lectures/L25_IntroToSpecContinued/IntroToSpecContinued.pdf

are going to solve the problem. Building on the work of others is rele-
vant to make the problem feasible, but it isn’t technically needed to make
the problem solvable.

There are two spot in the SRS to show that you are building on the
work of others: System Context and System Constraints. The System
Context shows the boundary between your software and the environment
in which it works. If the software will depend on services from other
libraries, the availability of these services should be mentioned. In the
system context diagram there would be other boxes that your program
would point to. You are then explicitly saying that your program will
depend on these services. Ideally, the services will be given generic
names. That is, unless you have no choice, you should leave it open
as to which library will actually provide the services. In this way you
keep your document abstract. However, there are cases where the design
decision is imposed on you. In these cases you would include the names
of the specific library, or libraries, as System Constraints (and list them
in the corresponding section of the SRS).

. As I work on my Verification and Validation plan I find part of the SRS
should be changed. What should I do?

This is completely natural and expected. Students in the class make
this observation every year. We cannot really have perfect knowledge
when we are writing the first draft of our SRS. We learn by jumping in
and starting the documentation. As we get further in the project our
understanding improves.

This is why we have two “official” iterations of the SRS in the course.
You should also have many sub-iterations as the term goes along. Our
aim 1s to have documentation at the end of the course that fakes a
rational design process.



