
System Verification and Validation Plan for
ProgName

Team #, Team Name
Student 1 name
Student 2 name
Student 3 name
Student 4 name

December 30, 2025

Revision History

Date Version Notes

Date 1 1.0 Notes
Date 2 1.1 Notes

[The intention of the VnV plan is to increase confidence in the software. How-
ever, this does not mean listing every verification and validation technique
that has ever been devised. The VnV plan should also be a feasible plan.
Execution of the plan should be possible with the time and team available.
If the full plan cannot be completed during the time available, it can either
be modified to “fake it”, or a better solution is to add a section describing
what work has been completed and what work is still planned for the future.
—SS]

[The VnV plan is typically started after the requirements stage, but before
the design stage. This means that the sections related to unit testing cannot
initially be completed. The sections will be filled in after the design stage is
complete. the final version of the VnV plan should have all sections filled in.
—SS]

i

Contents

1 Symbols, Abbreviations, and Acronyms iv

2 General Information 1
2.1 Summary . 1
2.2 Objectives . 1
2.3 Extras . 1
2.4 Relevant Documentation . 2

3 Plan 2
3.1 Verification and Validation Team 2
3.2 SRS Verification . 2
3.3 Design Verification . 2
3.4 Verification and Validation Plan Verification 3
3.5 Implementation Verification 3
3.6 Automated Testing and Verification Tools 3
3.7 Software Validation . 4

4 System Tests 4
4.1 Tests for Functional Requirements 4

4.1.1 Area of Testing1 . 4
4.1.2 Area of Testing2 . 5

4.2 Tests for Nonfunctional Requirements 5
4.2.1 Area of Testing1 . 6
4.2.2 Area of Testing2 . 6

4.3 Traceability Between Test Cases and Requirements 7

5 Unit Test Description 7
5.1 Unit Testing Scope . 7
5.2 Tests for Functional Requirements 7

5.2.1 Module 1 . 7
5.2.2 Module 2 . 8

5.3 Tests for Nonfunctional Requirements 9
5.3.1 Module ? . 9
5.3.2 Module ? . 9

5.4 Traceability Between Test Cases and Modules 9

ii

6 Appendix 11
6.1 Symbolic Parameters . 11
6.2 Usability Survey Questions? 11

List of Tables

[Remove this section if it isn’t needed —SS]

List of Figures

[Remove this section if it isn’t needed —SS]

iii

1 Symbols, Abbreviations, and Acronyms

symbol description

T Test

[symbols, abbreviations, or acronyms — you can simply reference the SRS
(Author, 2019) tables, if appropriate —SS]

[Remove this section if it isn’t needed —SS]

iv

This document ... [provide an introductory blurb and roadmap of the
Verification and Validation plan —SS]

2 General Information

2.1 Summary

[Say what software is being tested. Give its name and a brief overview of its
general functions. —SS]

2.2 Objectives

[State what is intended to be accomplished. The objective will be around
the qualities that are most important for your project. You might have
something like: “build confidence in the software correctness,” “demonstrate
adequate usability.” etc. You won’t list all of the qualities, just those that
are most important. —SS]

[You should also list the objectives that are out of scope. You don’t have
the resources to do everything, so what will you be leaving out. For instance,
if you are not going to verify the quality of usability, state this. It is also
worthwhile to justify why the objectives are left out. —SS]

[The objectives are important because they highlight that you are aware
of limitations in your resources for verification and validation. You can’t
do everything, so what are you going to prioritize? As an example, if your
system depends on an external library, you can explicitly state that you will
assume that external library has already been verified by its implementation
team. —SS]

2.3 Extras

[Summarize the extras (if any) that were tackled by this project. Extras
can include usability testing, code walkthroughs, user documentation, for-
mal proof, GenderMag personas, Design Thinking, etc. Extras should have
already been approved by the course instructor as included in your problem
statement. You can use a pull request to update your extras (in TeamCompo-
sition.csv or Repos.csv) if your plan changes as a result of the VnV planning
exercise. —SS]

1

2.4 Relevant Documentation

[Reference relevant documentation. This will definitely include your SRS
and your other project documents (design documents, like MG, MIS, etc).
You can include these even before they are written, since by the time the
project is done, they will be written. You can create BibTeX entries for your
documents and within those entries include a hyperlink to the documents.
—SS]

Author (2019)
[Don’t just list the other documents. You should explain why they are

relevant and how they relate to your VnV efforts. —SS]

3 Plan

[Introduce this section. You can provide a roadmap of the sections to come.
—SS]

3.1 Verification and Validation Team

[Your teammates. Maybe your supervisor. You should do more than list
names. You should say what each person’s role is for the project’s verification.
A table is a good way to summarize this information. —SS]

3.2 SRS Verification

[List any approaches you intend to use for SRS verification. This may in-
clude ad hoc feedback from reviewers, like your classmates (like your primary
reviewer), or you may plan for something more rigorous/systematic. —SS]

[If you have a supervisor for the project, you shouldn’t just say they
will read over the SRS. You should explain your structured approach to the
review. Will you have a meeting? What will you present? What questions
will you ask? Will you give them instructions for a task-based inspection?
Will you use your issue tracker? —SS]

[Maybe create an SRS checklist? —SS]

3.3 Design Verification

[Plans for design verification —SS]

2

[The review will include reviews by your classmates —SS]
[Create a checklists? —SS]

3.4 Verification and Validation Plan Verification

[The verification and validation plan is an artifact that should also be verified.
Techniques for this include review and mutation testing. —SS]

[The review will include reviews by your classmates —SS]
[Create a checklists? —SS]

3.5 Implementation Verification

[You should at least point to the tests listed in this document and the unit
testing plan. —SS]

[In this section you would also give any details of any plans for static
verification of the implementation. Potential techniques include code walk-
throughs, code inspection, static analyzers, etc. —SS]

[The final class presentation in CAS 741 could be used as a code walk-
through. There is also a possibility of using the final presentation (in CAS741)
for a partial usability survey. —SS]

3.6 Automated Testing and Verification Tools

[What tools are you using for automated testing. Likely a unit testing frame-
work and maybe a profiling tool, like ValGrind. Other possible tools include
a static analyzer, make, continuous integration tools, test coverage tools, etc.
Explain your plans for summarizing code coverage metrics. Linters are an-
other important class of tools. For the programming language you select,
you should look at the available linters. There may also be tools that verify
that coding standards have been respected, like flake9 for Python. —SS]

[If you have already done this in the development plan, you can point to
that document. —SS]

[The details of this section will likely evolve as you get closer to the
implementation. —SS]

3

3.7 Software Validation

[If there is any external data that can be used for validation, you should
point to it here. If there are no plans for validation, you should state that
here. —SS]

[You might want to use review sessions with the stakeholder to check
that the requirements document captures the right requirements. Maybe
task based inspection? —SS]

[For those capstone teams with an external supervisor, the Rev 0 demo
should be used as an opportunity to validate the requirements. You should
plan on demonstrating your project to your supervisor shortly after the sched-
uled Rev 0 demo. The feedback from your supervisor will be very useful for
improving your project. —SS]

[For teams without an external supervisor, user testing can serve the same
purpose as a Rev 0 demo for the supervisor. —SS]

[This section might reference back to the SRS verification section. —SS]

4 System Tests

[There should be text between all headings, even if it is just a roadmap of
the contents of the subsections. —SS]

4.1 Tests for Functional Requirements

[Subsets of the tests may be in related, so this section is divided into different
areas. If there are no identifiable subsets for the tests, this level of document
structure can be removed. —SS]

[Include a blurb here to explain why the subsections below cover the
requirements. References to the SRS would be good here. —SS]

4.1.1 Area of Testing1

[It would be nice to have a blurb here to explain why the subsections be-
low cover the requirements. References to the SRS would be good here. If
a section covers tests for input constraints, you should reference the data
constraints table in the SRS. —SS]

4

Title for Test

1. test-id1

Control: Manual versus Automatic

Initial State:

Input:

Output: [The expected result for the given inputs. Output is not how
you are going to return the results of the test. The output is the
expected result. —SS]

Test Case Derivation: [Justify the expected value given in the Output
field —SS]

How test will be performed:

2. test-id2

Control: Manual versus Automatic

Initial State:

Input:

Output: [The expected result for the given inputs —SS]

Test Case Derivation: [Justify the expected value given in the Output
field —SS]

How test will be performed:

4.1.2 Area of Testing2

...

4.2 Tests for Nonfunctional Requirements

[The nonfunctional requirements for accuracy will likely just reference the
appropriate functional tests from above. The test cases should mention re-
porting the relative error for these tests. Not all projects will necessarily
have nonfunctional requirements related to accuracy. —SS]

5

[For some nonfunctional tests, you won’t be setting a target threshold for
passing the test, but rather describing the experiment you will do to measure
the quality for different inputs. For instance, you could measure speed versus
the problem size. The output of the test isn’t pass/fail, but rather a summary
table or graph. —SS]

[Tests related to usability could include conducting a usability test and
survey. The survey will be in the Appendix. —SS]

[Static tests, review, inspections, and walkthroughs, will not follow the
format for the tests given below. —SS]

[If you introduce static tests in your plan, you need to provide details.
How will they be done? In cases like code (or document) walkthroughs, who
will be involved? Be specific. —SS]

4.2.1 Area of Testing1

Title for Test

1. test-id1

Type: Functional, Dynamic, Manual, Static etc.

Initial State:

Input/Condition:

Output/Result:

How test will be performed:

2. test-id2

Type: Functional, Dynamic, Manual, Static etc.

Initial State:

Input:

Output:

How test will be performed:

4.2.2 Area of Testing2

...

6

4.3 Traceability Between Test Cases and Requirements

[Provide a table that shows which test cases are supporting which require-
ments. —SS]

5 Unit Test Description

[This section should not be filled in until after the MIS (detailed design
document) has been completed. —SS]

[Reference your MIS (detailed design document) and explain your overall
philosophy for test case selection. —SS]

[To save space and time, it may be an option to provide less detail in this
section. For the unit tests you can potentially layout your testing strategy
here. That is, you can explain how tests will be selected for each module.
For instance, your test building approach could be test cases for each access
program, including one test for normal behaviour and as many tests as needed
for edge cases. Rather than create the details of the input and output here,
you could point to the unit testing code. For this to work, you code needs
to be well-documented, with meaningful names for all of the tests. —SS]

5.1 Unit Testing Scope

[What modules are outside of the scope. If there are modules that are de-
veloped by someone else, then you would say here if you aren’t planning on
verifying them. There may also be modules that are part of your software,
but have a lower priority for verification than others. If this is the case,
explain your rationale for the ranking of module importance. —SS]

5.2 Tests for Functional Requirements

[Most of the verification will be through automated unit testing. If appropri-
ate specific modules can be verified by a non-testing based technique. That
can also be documented in this section. —SS]

5.2.1 Module 1

[Include a blurb here to explain why the subsections below cover the module.
References to the MIS would be good. You will want tests from a black box

7

perspective and from a white box perspective. Explain to the reader how the
tests were selected. —SS]

1. test-id1

Type: [Functional, Dynamic, Manual, Automatic, Static etc. Most will
be automatic —SS]

Initial State:

Input:

Output: [The expected result for the given inputs —SS]

Test Case Derivation: [Justify the expected value given in the Output
field —SS]

How test will be performed:

2. test-id2

Type: [Functional, Dynamic, Manual, Automatic, Static etc. Most will
be automatic —SS]

Initial State:

Input:

Output: [The expected result for the given inputs —SS]

Test Case Derivation: [Justify the expected value given in the Output
field —SS]

How test will be performed:

3. ...

5.2.2 Module 2

...

8

5.3 Tests for Nonfunctional Requirements

[If there is a module that needs to be independently assessed for performance,
those test cases can go here. In some projects, planning for nonfunctional
tests of units will not be that relevant. —SS]

[These tests may involve collecting performance data from previously
mentioned functional tests. —SS]

5.3.1 Module ?

1. test-id1

Type: [Functional, Dynamic, Manual, Automatic, Static etc. Most will
be automatic —SS]

Initial State:

Input/Condition:

Output/Result:

How test will be performed:

2. test-id2

Type: Functional, Dynamic, Manual, Static etc.

Initial State:

Input:

Output:

How test will be performed:

5.3.2 Module ?

...

5.4 Traceability Between Test Cases and Modules

[Provide evidence that all of the modules have been considered. —SS]

9

References

Author Author. System requirements specification. https://github.com/...,
2019.

10

https://github.com/...

6 Appendix

This is where you can place additional information.

6.1 Symbolic Parameters

The definition of the test cases will call for SYMBOLIC CONSTANTS. Their
values are defined in this section for easy maintenance.

6.2 Usability Survey Questions?

[This is a section that would be appropriate for some projects. —SS]

11

Appendix — Reflection

[This section is not required for CAS 741 —SS]
The information in this section will be used to evaluate the team members

on the graduate attribute of Lifelong Learning.
The purpose of reflection questions is to give you a chance to assess your

own learning and that of your group as a whole, and to find ways to improve in
the future. Reflection is an important part of the learning process. Reflection
is also an essential component of a successful software development process.

Reflections are most interesting and useful when they’re honest, even if
the stories they tell are imperfect. You will be marked based on your depth
of thought and analysis, and not based on the content of the reflections
themselves. Thus, for full marks we encourage you to answer openly and
honestly and to avoid simply writing “what you think the evaluator wants
to hear.”

Please answer the following questions. Some questions can be answered
on the team level, but where appropriate, each team member should write
their own response:

1. What went well while writing this deliverable?

2. What pain points did you experience during this deliverable, and how
did you resolve them?

3. What knowledge and skills will the team collectively need to acquire to
successfully complete the verification and validation of your project?
Examples of possible knowledge and skills include dynamic testing
knowledge, static testing knowledge, specific tool usage, Valgrind etc.
You should look to identify at least one item for each team member.

4. For each of the knowledge areas and skills identified in the previous
question, what are at least two approaches to acquiring the knowledge
or mastering the skill? Of the identified approaches, which will each
team member pursue, and why did they make this choice?

12

	Symbols, Abbreviations, and Acronyms
	General Information
	Summary
	Objectives
	Extras
	Relevant Documentation

	Plan
	Verification and Validation Team
	SRS Verification
	Design Verification
	Verification and Validation Plan Verification
	Implementation Verification
	Automated Testing and Verification Tools
	Software Validation

	System Tests
	Tests for Functional Requirements
	Area of Testing1
	Area of Testing2

	Tests for Nonfunctional Requirements
	Area of Testing1
	Area of Testing2

	Traceability Between Test Cases and Requirements

	Unit Test Description
	Unit Testing Scope
	Tests for Functional Requirements
	Module 1
	Module 2

	Tests for Nonfunctional Requirements
	Module ?
	Module ?

	Traceability Between Test Cases and Modules

	Appendix
	Symbolic Parameters
	Usability Survey Questions?

